Эл Двигатели Вентиляторов Асинхронные Причина Не Запуска

Posted on  by admin

Пуск и защита двигателей переменного тока. 4.1 Системы пуска асинхронного двигателя. Настоящий раздел посвящен системам пуска и торможения асинхронных двигателей всех типов. Защита двигателя необходима для обеспечения надлежащей работы машин и оборудования.. При прямом пуске двигателей, в сети возникают большие броски тока, которые могут стать причиной падения напряжения (особенно если секция линии питания не соответствует требованиям), что может повлиять на функционирование потребителей. Это падение может быть достаточно большим, тогда оно заметно при работе систем освещения. Неоднократно делал подобное на обычных вентиляторах. -СТАТУТ-, 21:30 #. У меня на валу грязь была.почистил, все окей стало.. Вобщем я так понимаю. Что либо пуск с толкача, либо его менять. По уму конечно менять. Без него вообще можно двигатель запускать. Я хочу его снять чтоб в магазин снести. Evgeniz, 22:05 #. Если пусковая обмотка целая те сопроивление имеет а не обрыв (пусковая это где он стоит) то менять конденсатор 450 вольт а номинал такой как на нем указанно он не дорогой- для мотора в компрессоре 1700вт 45мкф 450в стоил в вольтмастере 210руб а здесь мощность меньше значит и номинал меньше. Www.Kostas, 21:26 #.

  1. Эл Двигатели Вентиляторов Асинхронные Причина Не Запускаются
  2. Эл Двигатели Вентиляторов Асинхронные Причина Не Запускается
Эл двигатели вентиляторов асинхронные причина не запускаются

Осмотр электродвигателя Сначала проверка начинается с тщательного осмотра. При наличии тех или иных дефектов прибора, он может выйти из строя гораздо раньше установленного срока. Дефекты могут появиться вследствие неправильной эксплуатации двигателя или его перегрузкой. К их числу относят следующее:. сломанные подставки или монтажные отверстия;.

краска посередине двигателя потемнела вследствие перегрева;. наличие грязи и других посторонних частиц внутри электродвигателя.

Эл Двигатели Вентиляторов Асинхронные Причина Не Запускаются

Также осмотр включает в себя проверку маркировки на электродвигателе. Она нанесена на металлический шильдик, который прикреплен снаружи двигателя. Табличка с маркировкой содержит важную информацию о технических характеристиках данного прибора. Как правило, это такие параметры, как:. сведения о компании-производителей двигателя;. название модели;. серийный номер;.

количество оборотов ротора в минуту;. мощность прибора;. схема подключения двигателя к тем или иным напряжениям;. схема получения той или иной скорости и направления движения;. напряжение – требования в плане напряжения и фазы;.

ток;. размеры и тип корпуса;. описание типа статора. Статор на электродвигателе может быть:. закрытым;. обдуваемым посредством вентилятора;. брызгозащитным и прочих типов.

Как проверить подшипники электродвигателя? После осмотра прибора можно начинать его проверять и делать это нужно начиная с подшипников двигателя. Очень часто неисправности электродвигателя происходят вследствие их поломки. Они нужны для того, чтобы ротор плавно и свободно двигался в статоре. Расположены подшипники с обоих концов ротора в специальных нишах. Для электродвигателей чаще всего используются такие типы подшипников, как.

разместите двигатель на твердой поверхности и положите одну руку на его верхнюю часть;. второй рукой проверните ротор;. постарайтесь услышать царапающие звуки, трение и неравномерность движения – всего это сигнализирует о неисправности прибора. Исправный ротор двигается спокойно и равномерно;. проверяем продольный люфт ротора, для этого его нужно потолкать за ось из статора. Допускается люфт максимум до 3 мм, но не больше. Если есть проблемы с подшипниками, то электродвигатель работает шумно, сами они перегреваются, что может привести к выходу прибора из строя.

Как проверить обмотку электродвигателя? Следующий этап проверки – это проверка обмотки электродвигателя на короткое замыкание на его корпус. Чаще всего бытовой двигатель не будет работать при замкнутой обмотке, поскольку сгорит предохранитель или сработает система защиты.

Последнее характерно для незаземленных приборов, рассчитанных на напряжение 380 вольт. Для проверки сопротивления используется омметр.

Проверить с его помощью обмотку электродвигателя можно таким способом:. устанавливаем омметр в режим измерения сопротивления;. щупы подключаем к нужным гнездам (как правило, к общему гнезду «Ом»);. выбираем шкалу с наиболее высоким множителем (например, R.1000 и т.д.);. устанавливаем стрелку на ноль, при этом щупы должны касаться друг друга;. находим винт для заземления электродвигателя (чаще всего он имеет шестигранную головку и окрашен в зеленый цвет).

Вместо винта может подойти любая металлическая часть корпуса, на которой можно соскрести краску для лучшего контакта с металлом;. к этому месту прижимаем щуп омметра, а второй щуп прижимаем по очереди к каждому электрическому контакту двигателя;. в идеале стрелка измерительного прибора должна слегка отклониться от наиболее высокого показателя сопротивления.

В ходе работы смотрите, чтобы ваши руки не касались щупов, иначе показатели будут неверными. Значение сопротивления должно быть показано в миллионах Ом или Мом. Если у вас омметр цифровой, в некоторых из них отсутствует возможность установки прибора на ноль, для таких омметров этап обнуления следует пропустить. Также при проверке обмоток смотрите, чтобы они не были короткозамкнутыми или оборванными. Некоторые простые однофазные или трехфазные электродвигатели проверяются путем переключения диапазона омметра на самый низкий, затем стрелка становится на ноль и осуществляется измерение сопротивления между проводами. Чтобы убедиться в том, что измерена каждая из обмоток, нужно обратиться к схеме двигателя.

Если омметр показывает сильно низкое значение сопротивления, значит, оно либо такое и есть, либо же вы прикасались к щупам прибора. А если значение слишком высокое, то это говорит о наличии проблем с обмотками электродвигателя, например, о разрыве. При высоком сопротивлении обмоток, двигатель не будет работать весь, либо же выйдет их строя его регулятор скорости. Последнее чаще всего касается трехфазных двигателей. Проверка других деталей и прочие потенциальные проблемы Обязательно стоит проверить пусковой конденсатор, который нужен для запуска некоторых моделей электродвигателей. В основном эти конденсаторы оснащены защитной металлической крышкой внутри двигателя.

А чтобы проверить конденсатор нужно ее снять. Такой осмотр может обнаружить такие признаки наличия неполадок, как:. утечка масла из конденсатора;. наличие отверстий в корпусе;. вспученный конденсаторный корпус;. неприятные запахи. Конденсатор тоже проверяют с помощью омметра.

Щупами следует коснуться выводов конденсатора, а уровень сопротивления должен сначала быть небольшим, а затем постепенно увеличиваться по мере зарядки конденсатором напряжением от батареек. Если сопротивление не растет или конденсатор короткозамкнутый, то, скорее всего, его пора менять. Перед проведением повторной проверки конденсатор нужно разрядить. Переходим к следующему этапу проверки двигателя: задней части картера, где устанавливаются подшипники. В этом месте ряд электродвигателей оснащается центробежными переключателями, которые переключают пусковые конденсаторы или цепи для определения количества оборотов в минуту.

Также нужно проверить контакты реле на предмет пригорелости. Кроме этого, их следует почистить от жира и грязи. Механизм выключателя проверяется посредством отвертки, пружина должна нормально и свободно работать.

Запускаются

Советы по выбору электродвигателя Главное при выборе электродвигателя – это подбор его в соответствии с теми условиями, где он будет использоваться. Например, для влажной среды следует выбирать брызгозащитные приборы, а приборы открытого типа категорически нельзя подвергать воздействию жидкости.

Помните следующее:. двигатели брызгозащитного типа можно применять во влажных и сырых местах. Их конструкция такая, что жидкость не может попасть внутрь прибора под давлением силы тяжести или потока воды;. открытый двигатель предполагает, что все его детали будут находиться на виду. С торцов приборы имеют огромные отверстия и хорошо видны обмотки статора. Эти отверстия категорически нельзя блокировать, а сами электродвигатели подобного типа нельзя использовать во влажных помещениях, а также грязных и пыльных;. двигатели типа TEFC можно использовать везде, за исключением тех условий, на которые они не рассчитаны, о чем можно прочесть в руководстве пользователя к устройству.

Итак, мы перечислили наиболее распространенные проблемы, которые могут произойти с бытовыми электродвигателями. Практически всех их можно распознать и принять те или иные меры посредством проверки прибора. А как правильно его проверять и на какие детали при этом стоит обращать внимание прежде всего, мы и рассмотрели выше.

При эксплуатации в них по разным причинам возникают неисправности, которые могут привести к перерывам в работе станков и других производственных механизмов. Для того чтобы такие перерывы возможно меньше сказывались на выполнении предприятием производственных планов, необходимо уметь быстро найти причину неисправности и устранить ее. Необходимость в быстрейшем устранении повреждений обусловливается также и тем, что работа электродвигателя, имеющего небольшое повреждение, может привести к развитию повреждения и необходимости более сложного ремонта. Чтобы определить объем ремонта, необходимо выявить характер его неисправностей. Неисправности асинхронного двигателя разделяют на внешние и внутренние. К внешним неисправностям относятся:. обрыв одного или нескольких проводов, соединяющих асинхронный двигатель с сетью, или неправильное соединение;.

перегорание плавкой вставки предохранителя;. неисправности аппаратуры пуска или управления, пониженное или повышенное напряжение питающей сети;. перегрузка асинхронного двигателя;.

плохая вентиляция. Внутренние неисправности асинхронного двигателя могут быть механическими и электрическими. Механические повреждения:. нарушение работы подшипников;. деформация или поломка вала ротора (якоря);. разбалтывание пальцев щеткодержателей;. образование глубоких выработок («дорожек») на поверхности коллектора и контактных колец;.

ослабление крепления полюсов или сердечника статора к станине; обрыв или сползание проволочных бандажей роторов (якорей);. трещины и подшипниковых щитах или в станине и др. Электрические повреждения:. межвитковые замыкания;.

обрывы в обмотках;. пробой изоляции на корпус;. старение изоляции;. распайка соединений обмотки с коллектором;. неправильная полярность полюсов;.

Эл Двигатели Вентиляторов Асинхронные Причина Не Запуска

неправильные соединения в катушках и др. Наиболее распространенные неисправности:. Перегрузка или перегрев статора электродвигателя - 31%.

Межвитковое замыкание - 15%. Повреждения подшипников - 12%. Повреждение обмоток статора или изоляции - 11%.

Неравномерный воздушный зазор между статором и ротором - 9%. Работа электродвигателя на двух фазах - 8%. Обрыв или ослабление крепления стержней в беличьей клетке - 5%. Ослабление крепления обмоток статора - 4%. Дисбаланс ротора электродвигателя - 3%. 1. Несоосность валов - 2%.

Ниже приведено краткое описание некоторых неисправностей в электродвигателях, возможные причины их возникновения. Двигатель при пуске не вращается или скорость его вращения ненормальная. Причинами указанной неисправности могут быть механические и электрические неполадки. К электрическим неполадкам относятся: внутренние обрывы в обмотке статора или ротора, обрыв в питающей сети, нарушения нормальных соединений в пусковой аппаратуре. При обрыве обмотки статора в нем не будет создаваться вращающееся магнитное поле, а при обрыве в двух фазах ротора в обмотке последнего не будет тока, взаимодействующего с вращающимся полем статора, и двигатель не сможет работать.

Если обрыв обмотки произошел во время работы двигателя, он может продолжать работать с номинальным вращающим моментом, но скорость вращения сильно понизится, а сила тока настолько увеличится, что при отсутствии максимальной защиты может перегореть обмотка статора или ротора. В случае соединения обмоток двигателя в треугольник и обрыва одной из его фаз двигатель начнет вращаться, так как его обмотки окажутся соединенными в открытый треугольник, при котором образуется вращающееся магнитное поле, сила тока в фазах будет неравномерной, а скорость вращения — ниже номинальной. При этой неисправности ток в одной из фаз в случае номинальной нагрузки двигателя будет в 1,73 раза больше, чем в двух других. Когда у двигателя выведены все шесть концов его обмоток, обрыв в фазах определяют мегаомметром.

Эл Двигатели Вентиляторов Асинхронные Причина Не Запускается

Обмотку разъединяют и измеряют сопротивление каждой фазы. Скорость вращения двигателя при полной нагрузке ниже номинальной может быть из-за пониженного напряжения сети, плохих контактов в обмотке ротора, а также из-за большого сопротивления в цепи ротора у двигателя с фазным ротором. При большом сопротивлении в цепи ротора возрастает скольжение двигателя и уменьшается скорость его вращения. Сопротивление в цепи ротора увеличивают плохие контакты в щеточном устройстве ротора, пусковом реостате, соединениях обмотки с контактными кольцами, пайках лобовых частей обмотки, а также недостаточное сечение кабелей и проводов между контактными кольцами и пусковым реостатом. Плохие контакты в обмотке ротора можно выявить, если в статор двигателя подать напряжение, равное 20—25% номинального. Заторможенный ротор медленно поворачивают вручную и проверяют силу тока во всех трех фазах статора.

Если ротор исправен, то при всех его положениях сила тока в статоре одинакова, а при обрыве или плохом контакте будет изменяться в зависимости от положения ротора. Плохие контакты в пайках лобовых частей обмотки фазного ротора определяют методом падения напряжения. Метод основан на увеличении падения напряжения в местах недоброкачественной пайки. При этом замеряют величины падения напряжения во всех местах соединений, после чего результаты измерений сравнивают.

Пайки считаются удовлетворительными, если падение напряжения в них превышает падение напряжения в пайках с минимальными показателями не более чем на 10%. У роторов с глубокими пазами может также происходить разрыв стержней из-за механических перенапряжений материала. Разрыв стержней в пазовой части короткозамкнутого ротора определяют следующим образом. Ротор выдвигают из статора и в зазор между ними забивают несколько деревянных клиньев, чтобы ротор не мог повернуться. К статору подводят пониженное напряжение не более 0,25 Uном. На каждый паз выступающей части ротора поочередно накладывают стальную пластину, которая должна перекрывать два зубца ротора.

Если стержни целые, пластина будет притягиваться к ротору и дребезжать. При наличии разрыва притяжение и дребезжание пластины исчезают. Двигатель вращается при разомкнутой цепи фазного ротора. Причина неисправности — короткое замыкание в обмотке ротора. При включении двигатель медленно вращается, а его обмотки сильно нагреваются, так как в замкнутых накоротко витках вращающимся полем статора наводится ток большой величины. Короткие замыкания возникают между хомутиками лобовых частей, а также между стержнями при пробое или ослаблении изоляции в обмотке ротора. Это повреждение определяют тщательным внешним осмотром и измерением сопротивления изоляции обмотки ротора.

Если при осмотре не удается обнаружить повреждение, то его определяют по неравномерному нагреву обмотки ротора на ощупь, для чего ротор затормаживают, а к статору подводят пониженное напряжение. Равномерный нагрев всего двигателя выше допустимой нормы может получиться в результате длительной перегрузки и ухудшения условий охлаждения.

Повышенный нагрев вызывает преждевременный износ изоляции обмоток. Местный нагрев обмотки статора, который обычно сопровождается сильным гудением, уменьшением скорости вращения двигателя и неравномерными токами в его фазах, а также запахом перегретой изоляции. Эта неисправность может возникнуть в результате неправильного соединения между собой катушек в одной из фаз, замыкания обмотки на корпус в двух местах, замыкания между двумя фазами, короткого замыкания между витками в одной из фаз обмотки статора. При замыканиях в обмотках двигателя вращающимся магнитным полем в короткозамкнутом контуре будет наводиться э. С, которая создаст ток большой величины, зависящий от сопротивления замкнутого контура. Поврежденная обмотка может быть найдена по величине измеренного сопротивления, при этом поврежденная фаза будет иметь меньшее сопротивление, чем исправные. Сопротивление измеряют мостом или методом амперметра — вольтметра.

Поврежденную фазу можно также определить методом измерения тока в фазах, если к двигателю подвести пониженное напряжение. При соединении обмоток в звезду ток в поврежденной фазе будет больше, чем в других. Если обмотки соединены в треугольник, линейный ток в двух проводах, к которым присоединена поврежденная фаза, будет больше, чем в третьем проводе. При определении указанного повреждения у двигателя с короткозамкнутым ротором последний может быть заторможенным или вращаться, а у двигателей с фазным ротором обмотка ротора может быть разомкнута. Поврежденные катушки определяют по падению напряжения на их концах: на поврежденных катушках падение напряжения будет меньше, чем на исправных. Местный нагрев активной стали статора происходит из-за выгорания и оплавления стали при коротких замыканиях в обмотке статора, а также при замыкании листов стали вследствие задевания ротора о статор во время работы двигателя или вследствие разрушения изоляции между отдельными листами стали.

Признаками задевания ротора о статор являются дым, искры и запах гари; активная сталь в местах задевания приобретает вид полированной поверхности; появляется гудение, сопровождающееся вибрацией двигателя. Причиной задевания служит нарушение нормального зазора между ротором и статором в результате износа подшипников, неправильной их установки, большого изгиб вала, деформации стали статора или ротора, одностороннего притяжения ротора к статору из-за витковых замыканий в обмотке статора, сильной вибрации ро-тора, который определяют щупом.

Ненормальный шум в двигателе. Нормально работающий двигатель издает равномерное гудение, которое характерно для всех машин переменного тока. Возрастание гудения и появление в двигателе ненормальных шумов могут явиться следствием ослабления запрессовки активной стали, пакеты которой будут периодически сжиматься и ослабляться под воздействием магнитного потока. Для устранения дефекта необходимо перепрессовать пакеты стали. Сильное гудение и шумы в машине могут быть также результатом неравномерности зазора между ротором и статором. Повреждения изоляции обмоток могут произойти от длительного перегрева двигателя, увлажнения и загрязнения обмоток, попадания на них металлической пыли, стружек, а также в результате естественного старения изоляции. Повреждения изоляции могут вызвать замыкания между фазами и витками отдельных катушек обмоток, а также замыкание обмоток на корпус двигателя.

Увлажнение обмоток происходит в случае длительных перерывов в работе двигателя, при непосредственном попадании в него воды или пара в результате хранения двигателя в сыром неотапливаемом помещении и т. Металлическая пыль, попавшая внутрь машины, создает токопроводящие мостики, которые постепенно могут вызвать замыкания между фазами обмоток и на корпус. Необходимо строго соблюдать сроки осмотров и планово-предупредительных ремонтов двигателей. Сопротивление изоляции обмоток двигателя напряжением до 1000 в не нормируется, изоляция считается удовлетворительной при сопротивлении 1000 ом на 1 в номинального напряжения, но не менее 0,5 Мом при рабочей температуре обмоток. Замыкание обмотки на корпус двигателя обнаруживают мегаомметром, а место замыкания — способом «прожигания» обмотки или методом питания ее постоянным током. Способ «прожигания» заключается в том, что один конец поврежденной фазы обмотки присоединяют к сети, а другой — к корпусу. При прохождении тока в месте замыкания обмотки на корпус образуется «прожог», появляются дым и запах горелой изоляции.

Двигатель не идет в ход в результате перегорания предохранителей в обмотке якоря, обрыва обмотки сопротивления в пусковом реостате или нарушения контакта в подводящих проводах. Обрыв обмотки сопротивления в пусковом реостате обнаруживают контрольной лампой или мегомметром. Заводы-изготовители электродвигателей в своих инструкциях по эксплуатации обычно приводят перечень основных неисправностей, которые могут иметь место при работе электродвигателя, и дают рекомендации по их устранению.